The Ball Drop Experiment

Overconfidence has been studied in three distinct ways: (1) Overestimation is believing that you are better than you actually are.  (2) Overplacement is believing that you rank better relative to others than you actually do.  (3) Overprecision is believing that your information is more accurate than it is, or that your beliefs are more likely to be correct than they actually are.  The last is the both the most robust and the least studied form of overconfidence (Moore & Healy, 2008).  This experiment examines overprecision.


The typical overprecision study asks people questions with quantitative answers (e.g., “What is the diameter of the moon?”) and asks them to estimate 90% confidence intervals.  These 90% confidence intervals routinely contain the correct answer less than 50% of the time (Alpert & Raiffa, 1969/1982; Soll & Klayman, 2004).  In addition to being large in size, this effect is amazingly robust.  It occurs not just for explicit measures, but also for implicit behavioral measures (Mamassian, 2008).  It is one of the most impressive and replicable effects in the decision making literature.  

The studies that have attempted to explain the psychological causes of overprecision have produced mixed and unsatisfying results.  There is no one explanation that can account for the many research findings of overprecision.  And while some studies have documented moderators of the effect, the literature documents only one reversal that we know of: Griffin and Tversky (1992).  Griffin and Tversky demonstrate the standard overprecision effect when people have a small amount of diagnostic information.  They also show that when people have a great deal of information, their judgments are under-precise: insufficiently confident in the conclusions they can draw from it.  We sought to replicate this underprecision in a new context that would help us understand when and why overprecision becomes underprecision.  
Hypotheses


We selected a novel task with two desirable features.  First, it allows us to specify what a normatively accurate judgment would be.  Second, rather than being dichotomous, it produces an outcome with a more meaningful range.  This fact allows us to examine the variance of subjective probability distributions.  We expected to replicate the standard finding of overprecision for small samples: 
1. People will exhibit overprecision when they have poor information (a small sample)
Furthermore, we expected to replicate the findings of Griffin and Tversky (1992) for larger samples:

2. People will exhibit underprecision when they have excellent information (a large sample)
Method

Participants were 197 individuals who participated for a small fixed payment.   Sixty of them were recruited through Amazon.com’s Mechanical Turk web site.  The remaining 137 were recruited through the Xlab at the University of California at Berkeley.  
Participants logged on to a web site where they got all their instructions and made their responses via computer.  To run through the experiment yourself, visit http://tinyurl.com/haas-bde/.  Participants read the following instructions: “This task will involve a ball-drop mechanism like the one pictured below.”  The balls dropped from slots on the top to land in bins at the bottom.  See Figure 1.
Figure 1.  The picture of the ball-drop mechanism that participants saw.
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“At each peg, the ball has an equal chance of bouncing to the left or the right.

“We have randomly picked one of the ten slots at the top of the ball-drop.  Each of the ten slots had an equal chance of being chosen.  Your challenge is to correctly identify which slot we picked.  

“We dropped a series of balls through the one slot we picked.  We will tell you where those balls wound up landing.  Your job is to guess, as best you can, which slot they were dropped from.”

We randomly chose one slot: Slot 3.  Twenty balls were then simulated from Slot 3.  All participants saw the same realization: The twenty balls landed in bins 7, 7, 8, 6, 9, 9, 10, 7, 11, 11, 8, 10, 10, 5, 7, 9, 6, 10, 11, and 7.  After being told that the first ball had landed in Bin 7, participants rated the probability that it had come from each of the ten slots.  They did this by pulling a bar to indicate the probability.  The sum of all ten bars was constrained to sum to 1.  See Figure 2.
Figure 2.  The interface by which people indicated the probability associated with each of the ten slots.  Participants could click and drag the bars to the right of each slot to indicate how probable they thought it was that the balls fell through that slot.
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Each participant reported a total of seven such subjective probability distributions (SPDs): after 1, 2, 3, 4, 5, 10, and 20 balls.  Participants were rewarded for greater accuracy: they earned lottery tickets according to the quadratic scoring rule for a $50 prize that one person would receive.
Results


Ball drop.  We find mixed evidence of overprecision after the very first ball.  After observing one outcome (a ball in Bin 7), the normative Bayesian probability distribution has a peak of 29.7% and a variance of 1.51.  In fact, participants’ self-reported judgments have an average peak of 40% and a variance of 2.45.  The variance in their SPDs is wider than it ought to be (by one-sample t-test: t (196) = 5.49, p < .001), implying underprecision.  
For the one slot each participant said was most likely, the hit rate is 23%.  Given confidence of 40%, they look overprecise by one-sample t-test: t (196) = 11.28, p < .001.  Note that this question is more similar to the questions by which overprecision has been assessed in the past: participants are asked to make a best guess and then indicate how confident they are about it, or specify a confidence interval around it.  However, it also can tend to produce apparent overprecision due to noisy measures.  In other words, by focusing on the hypothesis the individual thinks is most likely, it maximizes expressed confidence.  By maximizing expressed confidence, such measures increase the chance that actual hit rates will fall below it.
After 20 realizations, there are more mixed results.  The normative Bayesian probability distribution has a peak of 71% and a variance of .21.  In fact, participants’ self-reported judgments have a peak of 48% and a variance of 1.26.  Both of these results imply underprecision relative to the normative standard.  The peak confidence is significantly below the normative standard by one-sample t-test, t (87) = -11.47, p < .001.  The variance in their distributions is significantly greater than the variance in the normative judgment by one-sample t-test, t (87) = 7.64, p < .001.  Figure 3 shows optimal and actual variance in SPDs.  Figure 4 shows optimal and average peak confidence. 
Figure 3.  Width of optimal and actual average SPDs, as measured by their variance.
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Figure 4.  Optimal and actual average peak confidence, as measured by the probability assigned to the one slot thought to be most likely.  
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However, the difference between confidence and hit rate imply overprecision.  For each person’s peak interval, the hit rate is 28%.  Given confidence of 48%, they look overprecise by one-sample t-test, t (164) = 9.99, p < .001.  Figure 5 graphs confidence vs. hit rate.  

Figure 5.  Peak confidence vs. hit rate for that slot, for the seven judgments.
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Discussion

These results are provocative and invite further investigation.  First, the evidence of overprecision is not strong, even when participants have little information.  After just one ball drop, when participants have minimal information, the variance in their SPDs is significantly larger than the variance in the optimal judgment, implying underprecision.  
The results raise at least four important questions:

1) Why do we observe so little overprecision in these results when so much other research has found rampant overprecision?  What are the key differences in the experimental paradigms that produce the difference?  In order to understand this discrepancy, then, a sensible next step might be to design an experiment that varies the key dimensions that distinguish the present paradigm from others.  

One candidate to explain the difference would seem to be the fact that in other experiments participants have their own private inside knowledge.  Here, they do not.  The challenge is designing an experiment in which participants feel familiar enough to be able to make confident judgments yet we can also specify normative accuracy.  Here are some ideas for possible research paradigms:

a. Have people making estimates of the mean height of a group of people with which they are familiar, say, their class.  We vary (within subjects) the precision of the judgment as follows: 
i. Specify your SPD for the height of a single individual drawn from the class at random.

ii. Specify your SPD for the average height of 2 individuals drawn from the class at random.
iii. Your SPD for the average height of 5 individuals

iv. 10 individuals

v. 20 individuals

vi. The whole class

b. My reservation with using this design is that Jack Soll has some recent data in which he elicited 90% confidence intervals of height estimates using draws from students’ classes, and found them to be fairly well-calibrated.  I’m open to other suggestions.

2) Why do we not replicate Griffin & Tversky’s finding of overprecision?  To be precise, Griffin & Tversky found overprecision when participants held what they called “high strength, low weight” information.  Is there a relevant analog in the ball-drop paradigm?  Information weight could be said to go up as the sample size goes up from 1 ball to 20 balls.  But the strength? 
3) What best accounts for the inconsistency of overprecision in our results?  Confidence reliably exceeded accuracy for the one slot participants thought was most likely, suggesting overprecision.  Yet the variance in participants’ subjective probability distributions was consistently larger than the optimal probability distribution, suggesting underprecision.  I think the explanation for this apparent inconsistency is that participants do not adequately account for noise in their estimates: Unlike the Bayesian judgments, which are usually centered on the correct answer, responses from participants are much less likely to do so.  So their SPDs are generally too broad, but vary randomly around the truth, and this drives down their hit rates. 
4) To what extent are these results an idiosyncratic product of the one realization we happened to use?  To answer this question, we should run a new experiment using a different (random) realization for each participant.  

Ideas for follow-up study:
· Each participant gets her own random realization.

· Vary the number of balls seen between subjects as well as within.

· Change how slots are labeled from numbers to letters.
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